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ABSTRACT

The index of refraction in the neighbourhood of a Stark
broadened spectral line has been calculated using the Kronig-
Kramers relation between the absorption coefficient and the
index of refraction. For the absorption coefficient, the
function j, (x.:) given by Gricem has been used. A discussion
of the results as they apply to the hook method of measuring
oscillator strengths is given, and it is shown that errors
of the order of 5% can occur in the oscillator strength 1if

the conventional formula for anomalous dispersion 1s used.



INTRODUCTION

The parallelism between the index of refraction and the
absorption coefficient represented mathematically by the
Kronig-Kramers dispersion relation is often exploited experi-
mentally to measure plasma guantities by using the refractivity
when these same quantities could have been measured by ab-
sorption or emission experiments. For instance. clectron density
measurements of plasmas are often obtained by using the behaviour
of the index of refraction in wavelength regions distant from
spectral lines. The analogous absorption coefficient experi-
ment measurcs the continuum intensity in such spectral regions
but is subject to errors duc to scattered light. More relevant
is that the index of refraction in the regions near spectral
lines 1s used to obtain oscillator strengths (or, equivalently.
number densities in excited states) by means of the hocock method.
The analogous absorption cocfficient measurement would mcasure

equivalent widths of spectral lines.

Because of this close relationship between the two quantitices,
any processes which modify the shape of the absorption co-
efficient of a spectral line (such as Doppler broadening,
pressure broadening., etc.) also disturb the index of refraction.
However, the effect of these processes on the index of refraction

is not known for many important cases. For instance, the effect

of quasistatic microelectric fields on the absorption coefficient



after the treatment of Griem, Baranger, Kolb and Oertel2 is
shown in Figure 1; the figure illustrates that the cores of
the line are reasonably Lorentzian, but the wing behavior
deviates from Lorentzian with the deviation increasing with
distance from the center of the spectral line. However, it is
just in this far spectral region that the hock method samples
the refractive index to determine the oscillator strength. If
anomalies in the shape of the refractive index exist, that is,
if the refractivity is not represented by the ordinary dis-
persion profile, then the oscillator strength determination
will be erroneous correspondingly. In the following discussion,
the shape of the index of refraction will be derived using the
quasistatic approximation of reference 2 and an analysis of the
errors introduced into the hook method oscillator strengths

will be given.

THEORY
For tenuous media, the index of refraction and the absorption
coefficient can be calculated from the real and imaginary parts

of a complex function, i.e.,

f(d-’) = n({l‘r) -1 + 1 %(ti.) (l)
where u(w) is related to the ordinary absorption coefficient by
the relation

w(n) = k(1)c
20 (2)



Here c is the velocity of light, w is the angular frequency
being considered and k(w) is the ordinary absorption coefficient.
In this extended range of the definition of u(w), the relation-

ship between the positive and the negative frequency regions is

n(w) = —u (-w) (3)
Then integrating equation 1 around a closed contour gives (if

f(v) has no poles above the positive real axis),
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1
Re f(w) = ~ P f -IT:;___ (4)
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where P indicates the Cauchy principle value of the integral;

i.e., the integral can be written

e

+
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niw) - =;‘P j' AE,

W= (5)

or with the aid of equation 3, the Kronig-Kramers equation can
be obtained

n(w) -1

I
3 |
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p I’ ——Q(—:) du! (6)

O

With the assumption of tenuous media, the refractivity can
be expressed as a sum of terms; one term is the atomic and ionic
contribution, another term is the contribution from the electrons,
and the last term is due to the contribution from the nearby
spectral line (all other spectral line contributions are assumed

negligible)3
n-1 = (n—lg + (n—l)e + (n—l)x (7)

The first two terms of this expression come from the "continuum"



refractive index, and the last term, the contribution to the
refractivity by the spectral line, will be the term discussed
in the following sections.

Since a spectral line is peaked in a narrow wavelength
region, w,, the following approximations can be made in

equation 6

< 1
n(w') ~ 2. k(w")
52— 2w, (w'-m) (8)
where ., is the central frequency of the spectral line. These

approximations will introduce errors of the order of w/u,,
where w is the width of the spectral line; such errors will
normally be less than 0.1% for spectral lines in the visible
region of the spectra whose width is less than 5i. With these

approximations, the refractivity can be written

2T W, W' —w

n(1)-1 = c f M duw’ (9)

0

where the absorption coefficient for the spectral line is

given by the usual equation
k(w) = 27°r_c fmn N L(w), (10)

where r , is the classical radius of the electron, fmn is the
oscillator strength of the spectral line, Nn is the density of
atoms in the state n, and L(+t) is the shape parameter normalized

such that
+ (&8}

f L(w) du =1 (11)
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At this point, the equation 9 is parameterized in the manner of
) 2 . .

Griem, Baranger, Kolb and Oertel ; that is, the electron impact

widths and shifts are introduced as the measure of frequency

from the center of the spectral line

=i —d P |
X = - —>— = ___° A (12)
w W7\

where d is the electron impact shift and w is the electron
impact width. dA and v, are the same quantities measured in

units of wavelength. Also, the reduced shape factor is defined

L(n) = J. (%) (13)

r

< =

which allows equation 9 to be written

] 2
WY — _ T r,C R (X)

w

and the reduced refractivity is defined!'

1 )
R (x) =-— P —r '  dx! (15)
r m X'-X
-_—
This guantity carries all the information on shapes and electric

field dependence of the refractive index through the function jr(x).
Furthermore, the shape of the absorption coefficient is given

in reference 5 as

ool

5 Ge,0) = = f——f———dﬁw =
r T

1 + (x-0%/ 2g=)°= (16)

[s]

where B is the low frequency component of the electric field
(measured in units of the normal field strength), Wr(ﬁ) is the
probability distribution of the electric fields including

correlations, r is the ratio of the mean distance between the




ions and the Debye radius, and @ is the quasistatic broadening

parameter. For many spectral lines of light elements, 2@ and w are
. . 4 :

given by Griem; for other lines & and w can be calculated using

the formulae that he gives. The plasma parameter, r, is given by

r = u/?&_m— &y ® (17)
: KT

where N is the ion density of the plasma.

When relation (16) is substituted for j,. (x,%), the orders
of integration in equation (15) can be interchanged to give for
the reduced refractivity,

o

v x-0/ 3=
d[-‘ w 2 - ial
f BN 1+ (x-t/ 22 (18)

O

= =

Rr(x,”) =

This formula was used to calculate figures 2 and 3 with values

of W, (B) taken from Mozer and Barangers. Since, even for
relatively large values of r, the value of R, (x,2) does not
differ significantly from the Holtsmark value, RH {(x,x), (the
value for r =0.0) the subsequent discussion will be devoted to

the reduced refractivity calculated in the Holtsmark approximation,
i.e., the curves shown in figure 3. The striking aspect of these
curves, however, is that the large deviations which occurred in
the wings for the absorption coefficient are not present in the
index of refraction. 1In appendix A, asymptotic forms for the
reduced refractivity are obtained, and it can be seen that indeed

the leading term is always the ordinary dispersion term.



APPLICATION OF THE STARK REFRACTIVITY TO OSCILLATOR STRENGTH
MEASUREMENTS BY THE HOOK METHOD

The hook method of measuring oscillator strengths uses a
two-beam interferometer to define the position at which the
derivative of the refractivity is equal to some constant, K,6
Since the derivative assumes this value, K, on either side of the
spectral line, i.e., at the position of the hooks, then the
separation of these points is measured to obtain a number

related to the oscillator strength. 1In quantitative terms, the

central equation of the hook method is:

oo

n-1) | = -K (19)

3 (
ANt

If the refractivity given by equation 14 is expressed in wave-

length units, the derivative can be written

d(n-1) _14 _A dar

an T wax (7D =2 e o Ny gy (20)
and the hooks occur at positions x+ and x- such that

dR AS -

& I = K (Zﬁ 2 I, fmn Nn) ! (21)

X+ A

If there were no quasistatic electric fields, then in the
asymptotic limit, the derivative would be written

R _ 1 1

dx T x° (22)
and the roots of equation (21) would be

X+ = % fm £ Np (23)

2 —=
4ﬂw% K



or in terms of the separations of the hooks,

(24)
(x+ - x=) = 2 r;X32 franNp
4ww% K

In this form, it seems that the hook positions depend on the
width of the spectral line, but this is illusory, since (24) can be

rewritten in the form
, 2, _ 1 .3
(r+ - A=)°K = - Nr, fan Ny (25)

which is identical with Foster's equation 4.356 (with the
present K equal to his k/d).

The presence of the quasistatic Stark fields causes
equation (22) to be modified. After the asymptotic form of the
derivative of the reduced refractivity is taken from the appendix,
Eq. A-15, then the analysis can be simplified by writing the
derivatives of the Stark refractivity as deviations from the

ordinary ancmalous dispersion equations, viz. for x/1>0

(26)
1 1 _ 1 (1 3 | 105 a
1 (x+ + g+)2 B W!X+!2 x+°7 7 32/W'lx+lll/“
or the deviations, o can be written as
3 105a [r z 1.5 %
Lo 2 — = 2. o)
T 2xeT Tea 2 T X, 205 0 x (27)

Similarly the deviation for x/2<<0 can be written

z 1.5
—= /T |x_|* ~ T§—1+ 2.9|a|x_| (28)

D=

o232
” 2

- lx

so that the hook separation can be shown to be

o= +w - =Xt + (|x_[+e_) (29)

il
N
%
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|
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where the identification |x+| ~ |x | = |%x| has been made.
Then the errors introduced into the oscillator strengths
by reducing the data for the hook positions in terms of the

anomalous dispersion formulae will be twice the errors in the

hook positions, or

e {5520

22 + .86Q %7
X

(30)

IS

An idea of the size of the errors can be gained by the example

of the Mg I 25875 for an electron density of 10*® cm™®. For this
. ‘ .4

line at a temperature of 5000 'K, Griem gives i+ as .35 so that

with a hook measurement at 10 halfwidths of the spectral line

(x = 10), the error becomes
3 .86 x .35
E= 100" 5.6 ~ - 08

DISCUSSION AND SUMMARY

The validity criteria ol the refractivity relations given
here will be the same as the validity criteria of the Stark
broadening theory given in reference 7. The one remark which
might be especially mentioned concerns the case where the
Lorentzian width differs from that given by Griem. This would
be the case if other broadening causes were operative, in-
accuracies in the broadening theory were present,7’ 8, or effects
such as Debye shielding should reduce the broadeningg. Under

these circumstances, the 4 given by Griem would still be an
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accurate quantity, but a new @ should be calculated using the

relation
at = (=,)% o (31)

where the primes indicate the revised quantities and the un-

primed numbers are those given by Griem.

In addition, mention should be made of the fact that the
quasistatic theory presented here does not apply to spectral
lines emitted by ions; of course, a similar analysis is possible,
but the Holtsmark distribution used in the present context does
not allow for the additional correlations produced in the neigh-
bourhood of the ion.

The striking aspect of the refractivity curves presented is
that indeed, they do approach the ordinary dispersion shape at
large x. The strong deviation of the absorption coefficient from
a Lorentzian in the wings of the spectral line seems to be replaced
in the index of refraction by an anomalous behaviour in the cores
of the spectral line. While it is difficult to find a physical
explanation for this effect, it is tempting to regard it as an
aspect of the nature of the Hilbert transform which can be expressed
as an incomplete Fourier transform. The Fourier transform is
known to give an inversion to the functions that it acts upon by
transforming the wing behavior of the untransformed function into
the cores of the transformed function. Because of this extra-
ordinary behavior, the analysis of the refractivity is being con-

tinued with particular emphasis on the case where the ion per-
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turbers are treated by the impact theory in the case of the

absorption coefficient.
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APPENDIX

Asymptotic forms for R(x) can be derived by using the ex-

pression for the Holtsmark quasistatic field distribution

WH(B) = %ﬁ f y sin Py exp {—yd/z} dy (A-1)

o

and following the procedure described in the appendix of
2
reference . When the relation (A-1) is substituted into

equation (17), the refractivity can be expressed as

0 e}

1 _y%/ 3Rpe .
R, (x,0) = = J,dﬁ %:%;:527392)2 I fé y sin By exp(-y®/ ?) dy (a-2)

If the orders of integration are interchanged, then the form

results
2 [es]
R, (x,0) = =, J dy exp (-y”?) (xI, -2 °Ip) (A-3)

where the integrals to be evaluated are:

P P sinp _
S e AR A (-4

: ? B° sinPy -
T2 = f Tr(x-a#/ sp2)2 ¥ =~ 32 T (A-5)

Then, as in reference 2, it is convenient to introduce the

following definitions

-

|a|’% (6 |x|£i)

>
i

§ = -1, x/a < 0

on
i

= +1, x/a > 0

o
]

N 6|xl+/l+xa]% / /Z
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£

A +A =2 |a]7° R
+ - +
1
R, +R_=3 [1+x2 - 82 |x|2]2 = 3

With these definitions the integral can be rewritten in the form

+(1) iﬁy
3 || ~? ., e [ 1 _ 1
hh =~ 4R Im f ap (B+iA+) (P+1A ) 6—1A+ P-iA ] (A-6)

= % |x|~%® Im exp {—A_y}

so that I, can now be written

I, = - —3 I, =1Im |a|"*3 (b|x]-1) I, (A-7)
and
I, = |a|7% 2 +|x| I, - Re % |2]=% 2 exp {-A_y% (A-8)

then if the relation

B
I, - a* 2 1, = % |lal=% 2 exp {—\a\'s R+y} .
(A-9)

2
x cos |a|"® R y

is noted, the refractivity can be rewritten

o) =2 fal s [ay exp {2} exp {-lal-Try) conlal ny

(A-10)
the expansion of the exponential
o (—1)n—1 3/ 2 (n-1)
exp (-y¥ ?) = §j Tm Y (A-11)

n=1

allows Egq. A-10 to be integrated term by term with the help of

the Fourier transform relation 15
e _1 _ _ -1
j x" e ax cos mx dx = I'(v) (a®+1°) v/2 cos (vTan n/a)(A-12)

Re v>0, Re a>0



14

then the refractivity in the Holtsmark approximation is:

3n+1

T'(n) (1+x?)

[ n—l
- ~ a
RH(x,a) = Z(—l)n ! lﬁ_Z__l lo| ~ 3n+ls  cos [3;+l Tan™* (-6 |x|
n=1

+/1+x%) ] (A-13)

And, for large x, the asymptotic forms are

QX

QI

for the index of

>>0

< < 0

R(x)

R(x)

T o |x| x> 8/2m |x|7* (a-14)
1 1 15a
T T owx| (1- ;2) * 8/T |x|7/*

refraction, and for the derivative of the

reduced refractivity

QI

QX

dRr
dx

dR
dx

1 3 105 o

T oax|? (1- |x|2) C 3227 x|t e (A-15)
1 (1o -3y , 05 o
- W|X|2 'Xlz 32/?'|x|11/4
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RELATIVE INTENSITY PLOTTED AGAINST REDUCED WAVELENGTH
FOR A LORENTZIAN (DASHED LINE ), AND A STARK BROADENED
(SOLID LINE) PROFILE , X = .2.

Figure 1



R(x) .16

THE REDUCED REFRACTIVITY PLOTTED AGAINST THE REDUCED
WAVELENGTH FOR Q =.1 WITH I AS A PARAMETER
Figure 2



THE REDUCED REFRACTIVITY PLOTTED AGAINST THE REDUCED
WAVELENGTH WITH Q@ AS A PARAMETER
Figure 3




